Homogeneous hypersurfaces in euclidean spaces.
نویسندگان
چکیده
منابع مشابه
Homogeneous Hypersurfaces in Complex Hyperbolic Spaces
We study the geometry of homogeneous hypersurfaces and their focal sets in complex hyperbolic spaces. In particular, we provide a characterization of the focal set in terms of its second fundamental form and determine the principal curvatures of the homogeneous hypersurfaces together with their multiplicities.
متن کامل$L_1$-Biharmonic Hypersurfaces in Euclidean Spaces with Three Distinct Principal Curvatures
Chen's biharmonic conjecture is well-known and stays open: The only biharmonic submanifolds of Euclidean spaces are the minimal ones. In this paper, we consider an advanced version of the conjecture, replacing $Delta$ by its extension, $L_1$-operator ($L_1$-conjecture). The $L_1$-conjecture states that any $L_1$-biharmonic Euclidean hypersurface is 1-minimal. We prove that the $L_1$-conje...
متن کاملOn Homogeneous Coverings of Euclidean Spaces
The notion of a homogeneous covering of a given set is introduced and examined. Some homogeneous coverings of a Euclidean space, consisting of pairwise congruent geometric figures (spheres, hyperplanes, etc.), are constructed using the method of transfinite induction. 2000 Mathematics Subject Classification: 03E75, 05B40, 52C17.
متن کاملLorentzian Geodesic Flows between Hypersurfaces in Euclidean Spaces
There are several approaches to this question. One is from the perspective of a Riemannian metric on the group of diffeomorphisms of R. If the smooth hypersurfaces Mi bound compact regions Ωi , then the group of diffeomorphisms Diff(R) acts on such regions Ωi and their boundaries. Then, if φt, 1 ≤ t ≤ 1, is a geodesic in Diff(R) beginning at the identity, then φt(Ω) (or φt(Mi)) provides a path ...
متن کاملTangent Bundle of the Hypersurfaces in a Euclidean Space
Let $M$ be an orientable hypersurface in the Euclidean space $R^{2n}$ with induced metric $g$ and $TM$ be its tangent bundle. It is known that the tangent bundle $TM$ has induced metric $overline{g}$ as submanifold of the Euclidean space $R^{4n}$ which is not a natural metric in the sense that the submersion $pi :(TM,overline{g})rightarrow (M,g)$ is not the Riemannian submersion. In this paper...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Mathematical Society of Japan
سال: 1960
ISSN: 0025-5645
DOI: 10.2969/jmsj/01210001